In this post, we will build a couple different *quiver plots* using Python and **matplotlib**. A quiver plot is a type of 2D plot that shows vector lines as arrows. Quiver plots are useful in electrical engineering to visualize electrical potential and valuable in mechanical engineering to show stress gradients.

## Install **matplotlib** and **numpy**¶

To create the quiver plots, we'll use Python, **matplotlib**, **numpy** and a **Jupyter notebook**.

I recommend undergraduate engineers use the **Anaconda** distribution of Python, which comes with **matplotlib**, **numpy** and **Jupyter notebooks** pre-installed installed. If **matplotlib**, **numpy** and **Jupyter** are not available, these packages can be installed with **conda** or **pip**. To install, open the **Anaconda Prompt** or a terminal and type:

```
> conda install matplotlib numpy jupyter
```

or

```
$ pip install matplotlib numpy jupyter
```

To start a **Jupyter notebook**, open the **Anaconda Prompt** and type:

```
> jupyter notebook
```

**Jupyter notebooks** can also be started on at a command prompt with:

```
$ jupyter notebook
```

## Import **matplotlib** and **numpy**¶

At the top of the **Jupyter notebook**, we need to import the required packages to build our quiver plots:

**matplotlib****numpy**

The `%matplotlib inline`

magic command is added so that we can see our plots right in the **Jupyter notebook**.

```
import matplotlib.pyplot as plt
import numpy as np
#add %matplotlib inline if using a Jupyter notebook, remove if using a .py script
%matplotlib inline
```

## Quiver plot with one arrow¶

Let's buid a simple quiver plot that contains one arrow to see how matplotlib's `ax.quiver()`

method works. The `ax.quiver()`

method takes four positional arguments:

`ax.quiver(x_pos, y_pos, x_direct, y_direct)`

Where `x_pos`

and `y_pos`

are the arrow starting positions and `x_direct`

, `y_direct`

are the arrow directions.

Let's build our first plot to contain one quiver arrow at the starting point `x_pos = 0`

, `y_pos = 0`

. We'll define this one quiver arrow's direction as pointing up and to the right `x_direct = 1`

, `y_direct = 1`

.

```
fig, ax = plt.subplots()
x_pos = 0
y_pos = 0
x_direct = 1
y_direct = 1
ax.quiver(x_pos,y_pos,x_direct,y_direct)
plt.show()
```

We see a plot with one arrow pointing up and to the right.

## Quiver plot with two arrows¶

Now let's add a second arrow to our quiver plot by passing in two starting points and two arrow directions.

We'll keep our first arrow- starting position at the origin `0,0`

and pointing up and to the right, direction `1,1`

. We'll define the second arrow with a starting position of `-0.5,0.5`

which points straight down (in the `0,-1`

direction).

An additional keyword argument to add the `ax.quiver()`

method is `scale=5`

. This keyword argument scales the arrow lengths, so the arrows are longer and easier to see on the quiver plot.

To see the start and end of both arrows, we'll set the axis limits between `-1.5`

and `1.5`

using the `ax.axis()`

method. `ax.axis()`

accepts a list of axis limits in the form `[xmin, xmax, ymin, ymax]`

.

```
fig, ax = plt.subplots()
x_pos = [0, -0.5]
y_pos = [0, 0.5]
x_direct = [1, 0]
y_direct = [1, -1]
ax.quiver(x_pos,y_pos,x_direct,y_direct, scale=5)
ax.axis([-1.5,1.5,-1.5,1.5])
plt.show()
```

We see two arrows on the quiver plot. One arrow points to the upper right and the other arrow points straight down.

## Quiver plot using **np.meshgrid()**¶

Two arrows are great, but to create a whole 2D surface worth of arrows, we'll utilize **numpy's** `meshgrid()`

function.

We need to build a set of arrays that denote the x and y starting positions of each quiver arrow on the plot. We will call our quiver arrow starting position arrays `X`

and `Y`

.

We can use the x,y arrow starting *positions* to define the x and y components of each quiver arrow *direction*. We' ll call the quiver arrow direction arrays `u`

and `v`

. On this quiver plot, we'll define the quiver arrow direction based on the quiver arrow starting point using:

```
x = np.arange(0,2.2,0.2)
y = np.arange(0,2.2,0.2)
X, Y = np.meshgrid(x, y)
u = np.cos(X)*Y
v = np.sin(y)*Y
```

Now we can build the quiver plot using **matplotlib's** `ax.quiver()`

method. Remember, the `ax.quiver()`

method call takes four positional arguments:

```
ax.quiver(x_pos, y_pos, x_direct, y_direct)
```

This time `x_pos`

and `y_pos`

are 2D arrays which contain the starting positions of the arrows and `x_direct`

, `y_direct`

are 2D arrays which contain the arrow directions.

The commands `ax.xaxis.set_ticks([])`

and `ax.yaxis.set_ticks([])`

removes the tick marks from the axis and `ax.set_aspect('equal')`

sets the aspect ratio of the plot to 1:1.

```
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,u,v)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.axis([-0.2, 2.3, -0.2, 2.3])
ax.set_aspect('equal')
plt.show()
```

Now let's build another quiver plot with the $\hat{i}$ and $\hat{j}$ components (the horizontal and vertical components) of vector, $\vec{F}$ are dependant upon the arrow starting point $x,y$ according to the function:

$$ \vec{F} = \frac{x}{5} \ \hat{i} - \frac{y}{5} \ \hat{j} $$Again we'll use **numpy's** `np.meshgrid()`

function to build the arrow starting position arrays, then apply our function $\vec{F}$ to the $x$ and $y$ arrow starting point arrays.

```
x = np.arange(-5,6,1)
y = np.arange(-5,6,1)
X, Y = np.meshgrid(x, y)
u, v = X/5, -Y/5
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,u,v)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.axis([-6, 6, -6, 6])
ax.set_aspect('equal')
plt.show()
```

## Quiver plot containing a gradient¶

Next, let's build a quiver plot using the gradient function. The gradient function has the form:

$$ z = xe^{-x^2-y^2} $$We'll use **numpy's** `np.gradient()`

function to apply the gradient function based on every arrow's x,y starting position.

```
x = np.arange(-2,2.2,0.2)
y = np.arange(-2,2.2,0.2)
X, Y = np.meshgrid(x, y)
z = X*np.exp(-X**2 -Y**2)
dx, dy = np.gradient(z)
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,dx,dy)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_aspect('equal')
plt.show()
```

## Quiver plot with four vortices¶

Now let's build a quiver plot that contains four vortices. The function $\vec{F}$ which describes the 2D vortex field is:

$$ \vec{F} = sin(x)cos(y) \ \hat{i} -cos(x)sin(y) \ \hat{j} $$We'll build these direction arrays using **numpy** and the `np.meshgrid()`

function.

```
x = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20)
y = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20)
X,Y = np.meshgrid(x,y)
u = np.sin(X)*np.cos(Y)
v = -np.cos(X)*np.sin(Y)
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,u,v)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.axis([0,2*np.pi,0,2*np.pi])
ax.set_aspect('equal')
plt.show()
```

Cool. Nice and swirly.

## Quiver plots with color¶

Next, let's add some color to the quiver plots. The `ax.quiver()`

method has an optional fifth positional argument that specifies the quiver arrow color. The quiver arrow color argument needs to have the same dimensions as the position and direction arrays.

```
x = np.arange(0,2.2,0.2)
y = np.arange(0,2.2,0.2)
X, Y = np.meshgrid(x, y)
u = np.cos(X)*Y
v = np.sin(y)*Y
n = -2
color_array = np.sqrt(((v-n)/2)**2 + ((u-n)/2)**2)
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,u,v, color_array, alpha=0.8)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.axis([-0.2, 2.3, -0.2, 2.3])
ax.set_aspect('equal')
plt.show()
```

Let's add some color to the gradient quiver plot:

```
x = np.arange(-2,2.2,0.2)
y = np.arange(-2,2.2,0.2)
X, Y = np.meshgrid(x, y)
z = X*np.exp(-X**2 -Y**2)
dx, dy = np.gradient(z)
n = -2
color_array = np.sqrt(((dx-n)/2)**2 + ((dy-n)/2)**2)
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,dx,dy,color_array)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.set_aspect('equal')
plt.show()
```

Finally, we'll add some color to the vortex plot:

```
x = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20)
y = np.arange(0,2*np.pi+2*np.pi/20,2*np.pi/20)
X,Y = np.meshgrid(x,y)
u = np.sin(X)*np.cos(Y)
v = -np.cos(X)*np.sin(Y)
n = -1
color_array = np.sqrt(((dx-n)/2)**2 + ((dy-n)/2)**2)
fig, ax = plt.subplots(figsize=(7,7))
ax.quiver(X,Y,u,v,color_array, scale=17)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
ax.axis([0,2*np.pi,0,2*np.pi])
ax.set_aspect('equal')
plt.show()
```

## Summary¶

In this post, we built a couple different quiver plots with matplotlib and Python. Quiver plots are part of **matplotlib's** pylot library. The `ax.quiver()`

method accepts four positional arguments: x-positions, y-positions, x-directions, y-directions. **Numpy's** `meshgrid()`

function is useful for creating these position arrays. Finally, we added some color to our quiver plots by including a fifth positional argument to the `ax.quiver()`

method.